Scientists get up close to bacteria's toxic pumps
30 November 2009

The spread of antibiotic resistance among bacteria is a growing problem, making certain diseases increasingly difficult to treat. New strategies for attacking the bacteria are needed, yet virtually no novel-mechanism antibiotics are currently in development.
Gram-negative bacteria - such as those that cause stomach ulcers and a number of other serious diseases - are particularly difficult to attack as they have a double wall, incorporating an outer membrane surrounding the bacterial cell wall, which interferes with drug penetration.
Research funded by Wellcome Trust scientists is building up a clearer picture of how Gram-negative bacteria infect the host's cells - and how they spread antibiotic resistance.
Professor Gabriel Waksman and colleagues at the Institute of Structural and Molecular Biology at Birkbeck and UCL (University College London) are studying 'type IV secretion systems', cellular 'nanodevices' that behave like pumps. These tiny machines span across the double membrane of the bacteria, pumping toxins out into host cells and antibiotic resistance genes into antibiotic-sensitive bacteria. This pump may offer a chink in the armour of Gram-negative bacteria for novel antibiotics to exploit.
Professor Waksman and colleagues have previously described the structure of the core component of the pump, using a technique known as cryo-electron microscopy. Now, in a paper published in the journal 'Nature', the researchers describe in detail the crystal structure of the outer membrane part of this complex. This time, the researchers used x-ray crystallography, which gives a much higher resolution than cryo-electron microscopy, allowing each atom in the structure to be identified and localised.
"X-ray crystallography gives us a much closer look at how this pump is working," explains Professor Waksman. "It's like examining a car: when you first look at a car, you see its shape, but might not understand how it works. It's only by looking under the bonnet that you can see the engine and get a clearer idea of how it works.
"The big question for us is 'how does this pump work?' and that's what we're looking at now. By taking the pump apart and seeing how its engine works, we open up the way to 'throwing a spanner in the works' and stopping the pump working."
Although the component of the pump that is described in the 'Nature' paper is only a ten-thousandth the width of a human hair, it is the largest outer-membrane complex for which the structure is known at high resolution. It provides the first glimpse of a channel formed by more than one protein.
Toxins enter the pump through membrane channels that are integral parts of the pump. These channels are made of proteins embedded in the membrane. In large pumps, such as type IV secretion systems, these channels are very complex because they are made of many proteins: this new structure is made of three proteins, each present in fourteen copies. The extraordinary complexity of the arrangements of the proteins in the complex provides the first glimpse at the inner workings of the machinery.
"Type IV secretion systems secrete all sorts of virulence proteins and toxins," says Professor Waksman. "This structure provides a high resolution template to design effective new antibiotic treatments. In this era of ever-increasing antibiotic resistance, such a structural work provides a rich playground for antibiotics design."
Type IV secretion systems were first discovered in Agrobacterium tumefaciens, which uses the system to transfer tumour-inducing DNA into plants, causing 'crown gall', which can be devastating to crops such as grape vines, sugar beet and rhubarb. However, crop scientists have been able to successfully exploit this transfer system as a way of introducing new genes into industrial crops, conferring herbicide-resistance and resistance to pathogens.
Image: Outer membrane complex of the type IV secretion system. Credit: Professor Gabriel Waksman
Reference
Chandran et al. Structure of the outer membrane complex of a Type IV Secretion System. Nature 2009 [Epub ahead of print].
Contact
Craig Brierley
Senior Media Officer
Wellcome Trust
T +44 (0)20 7611 7329
E
c.brierley@wellcome.ac.uk
Notes for editors
The Wellcome Trust is the largest charity in the UK. It funds innovative biomedical research, in the UK and internationally, spending over £600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing.
Birkbeck, University of London, was founded in 1823. It is a world-class research and teaching institution and a vibrant centre of academic excellence. Over 90 per cent of Birkbeck academics are research-active - the highest rate for any multi-faculty institution in London and the fifth highest in the UK. The 2008 Research Assessment Exercise placed Birkbeck research in the top 25 per cent of multi-faculty institutions in the UK. In 2006 Birkbeck was awarded a prestigious Queen's Anniversary Prize for excellence in higher education research.
Founded in 1826, UCL (University College London) was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the fourth-ranked university in the 2009 THES-QS World University Rankings, and the third-ranked UK university in the 2008 league table of the top 500 world universities produced by the Shanghai Jiao Tong University. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 12 000 undergraduate and 8000 postgraduate students. Its annual income is over £600 million.


