We use cookies on this website. By continuing to use this site without changing your cookie settings, you agree that you are happy to accept our cookies and for us to access these on your device. Find out more about how we use cookies and how to change your cookie settings.

Health Innovation Challenge Fund

The Health Innovation Challenge Fund (HICF) is a parallel funding partnership between the Wellcome Trust and the Department of Health. The funders are collaborating to stimulate the creation of innovative healthcare products, technologies and interventions, and facilitate their development for the benefit of patients in the NHS and beyond. The HICF has a succession of thematic calls for proposals, each selected to focus on unmet needs in healthcare relevant to the NHS. The HICF offers translational funding to progress innovative approaches to healthcare from the proof-of-concept stage to early clinical studies in man. A number of projects have now been funded.

Translation of non-invasive prenatal diagnosis (NIPD) for selected single gene disorders into a clinical setting Current prenatal genetic testing is by amniocentesis or chorionic villus sampling which each carry miscarriage risks. Recently developed tests, called “non-invasive” prenatal diagnosis (NIPD), do not have miscarriage risks.

These are possible since the discovery that there is a small amount of a baby’s genetic material, known as free fetal DNA, present in a pregnant mothers blood. Tests for some genetic disorders, such as the muscle disorders Duchenne and Becker muscular dystrophies are currently being developed. However because there are thousands of different genetic disorders, many extremely rare, it is challenging to make these tests available to a wide range of different families. 
Scientists must show that the NIPD tests are accurate on stored blood samples for a range of conditions and then show that the tests are possible in the antenatal clinic and provide the same accurate results. Once proven the tests can be considered by the UKGTN (UK Genetic Testing Network) for implementation into routine NHS service. This project led by Dr Stephanie Allen of the West Midlands Regional Genetics Service aims to accelerate the safe transfer of genetic research into improved patient care for many different genetic disorders. Removing the miscarriage risk with the introduction of NIPD will increase the acceptability, and therefore availability of prenatal genetic testing for many couples.
Emberton MRI prostate
Micro-IGES – Microscopic Image Guided Endoluminal Surgery The current surgical technique for removing cancer from the body is generally effective however it carries a significant risk to patients during surgery and long-term post-operative problems such as chronic pain, disfigurement and poor quality of life.

Early stage cancer within a lumen, such as the colon, and precancerous polyps, can be removed endoscopically, thus avoiding the need to make a large incision on the body and potentially the creation of an artificial opening from the colon through the abdominal wall (colostomy). However, with the current instrumentation design, even tumours close to the external orifices of the bowel are difficult to remove with absolute certainty of completion. A project team led by Professor Guang Zhong Yang and Professor Ara Darzi at Imperial college are developing a robotic surgical device to facilitate tumour removal without the need for invasive surgery.  Micro-IGES provides a novel microscopic surgical platform with a greater degree of precision and accuracy through integrated sensing, probe-based microscopic imaging and robotically assisted intra-operative guidance. The platform will be evaluated in both in-vivo animal models and human clinical studies.
Emberton MRI prostate
Perfecting soft tissue attachment interface to an osseointegrated transdermal implant to deliver a predictable and robust patient outcome About 5000 new amputees each year are referred to limb fitting centres in the UK. Traditionally amputees attach their artificial limb using a socket that fits onto the limb stump.  Often attachment is cumbersome, uncomfortable and restricts daily activities.

In addition, the stump does not effectively transmit load and control movement.  This causes tissue problems, which means that patients must frequently visit clinic and sometimes the artificial limb is not used due to discomfort.  These long-term problems are a burden on the NHS and reduce amputees' quality of life.  The ITAP system being developed by Paul Unwin and colleagues at Stanmore Implants Worldwide Ltd uses an implant attached to the bone that projects through the skin, to which the artificial limb is easily attached.  This arrangement transmits load through the skeleton, which is how loads are naturally transferred.  The success of the ITAP implant is reliant on the integration of the skin around the implant to create a seal to prevent infection.  The objective of this programme is an implant that provides patients with an effective solution for the attachment of artificial limbs.
Emberton MRI prostate
SmartTarget: Image-guided Diagnosis and Treatment of Localised Prostate Cancer In current practice, the prostate cancer pathway is often compromised by lack of information on tumour location. This leads to ‘blind’ biopsies causing under-diagnosis of clinically important cancer, over-diagnosis of clinically unimportant cancers and poor risk-stratification. As a result, once diagnosed men usually undergo whole-gland treatments that confer significant rates of incontinence, impotence and rectal toxicity due to collateral tissue damage.

Research led by Professor Mark Emberton and Dr Dean Barratt at University College London (UCL) seeks to rectify this situation. Their project proposes to combine state-of-the-art diagnostic imaging with advanced image guidance technology so that doctors are provided with information on cancer location, shape, and size during surgical procedures. The aim is to transform prostate cancer care by enabling doctors to target clinically important cancers so that these are diagnosed more accurately. The project focuses on developing a novel device called “SmartTarget” which will ensure that information on the location of cancer from medical imaging is at the centre of the diagnosis and treatment of prostate cancer. The SmartTarget device will exploit magnetic resonance imaging (MRI), which can detect clinically important cancers more accurately, and translate information on cancer location, size and shape automatically into the surgical setting. The device aims to achieve this by presenting the doctor with a “picture” that combines information from MRI with information from ultrasound images that are widely used to guide the biopsy needle and treatment delivery. This will allow the doctor to identify and target the cancer on a computer screen in a similar way to a fighter pilot presented with a target on a head-up display.

Anticipated benefits of this technology include fewer biopsies and more accurate cancer diagnosis.  The ability to implement a more selective treatment strategy will result in less harm and cost significantly less than current strategies which treat the whole prostate gland. The specific objectives of the project are to develop and test the prototype SmartTarget device on patients, to develop detailed plans to commercialise the device, and to introduce the technology within the NHS (and potentially other healthcare systems) within a 5 year period.
Duncan epilepsy
Novel multimodality imaging techniques for neurosurgical planning and stereotactic navigation in epilepsy surgery Successful neurosurgery for epilepsy depends on removing the parts of the brain that give rise to seizures, and avoiding damaging areas undertaking vital functions such as language, movement and vision. Current techniques to direct surgery are based on MRI scans to show brain structure, but do not show areas needed for vital tasks, and do not permit interactive simulations of placement of recording electrodes in the brain.

A research group headed by Professor John Duncan at University College London and Dr Sebastien Ourselin of UCL Centre for Medical Image Computing has implemented methods to identify critical areas of brain function, connections and blood vessels and display these in 3D. They plan to develop this system to enable the neurosurgeon to plan the best operative approach for inserting recording electrodes and for planning surgical resections.  This information will be made available in the MRI scan guidance system in the operating room so that operations are more precise.
They will produce a new system that will result in epilepsy surgery being planned more effectively, resulting in a higher cure rate and fewer complications.
Davidson laparoscopic liver resection
Smart  laparoscopic liver resection : Integrated image guidance and tissue discrimination Liver cancers can be removed using key-hole surgery with less pain, tissue damage, and blood loss and faster recovery times than traditional open surgery. However few cancers are removed by this method because of the difficulty in identifying and dividing blood vessels within the liver using key-hole surgery techniques. In addition, the position of the tumour and major vessels in the liver alters during the surgery due to patient breathing and liver traction.

A research group headed by Professor Brian Davidson and Professor David Hawkes at University College London proposes to use the CT scan taken prior to surgery to identify the precise location of the cancer to the surrounding vessels and bile ducts and hence build a computer model of the liver for each individual patient. They will use this to monitor the position of the cancer and the major structures to the liver during the course of the key-hole surgery. This will be combined with a new method of detecting what kind of tissue is directly in front of the cutting instrument. This system is likely to result in a significant increase in the proportion of patients who undergo liver resection using key-hole surgery. The system will be validated on pigs and then evaluated on at least 25 patients. The system developed will also be applicable to operations on the pancreas, kidney and gallbladder.
A new minimally invasive surgery for the treatment of corneal endothelial disease The cornea is the transparent tissue at the front of the eye which allows light to reach the retina. If the cornea becomes cloudy, vision is impaired, a bit like looking through a frosted glass window.

Often the only treatment is a cornea transplant in which a surgeon removes the damaged cornea and replaces it with a donor cornea or part of a donor cornea. Often this has a good outcome, but the number of donor corneas available for surgery is limited, and risks such as infection or rejection remain.Professor Andrew Quantock’s team at Cardiff University together with collaborators at Kyoto Prefectural University of Medicine and Doshisha University in Japan plan to develop a new surgery for corneal cloudiness which is caused by diseased or damaged cells that line the inside of the cornea. Under local anaesthetic, they will very gently touch the front of the cornea for a few seconds with a new surgical device which very quickly freezes cells. In doing so the diseased endothelial cells at the back of the cornea are destroyed. The researchers will then apply eye drops which will encourage healthy endothelial cells to grow and repopulate the inside of the cornea. In this way the cornea can become healthy and clear again.
Tissue oxygen monitoring for detecting impending shock states and guiding therapy in the critically ill and those at high-risk Complications frequently occur following trauma, infection and major surgery. This can lead to failure of organs (e.g. lung, kidney, gut) necessitating admission to intensive care for organ support.

Mortality rates are high and long-term disability common in survivors. Studies already show how early resuscitation of the circulation in these patients can considerably improve outcomes. Although it is possible to gauge how much blood the heart is pumping to the tissues (cardiac output) better bedside monitors are needed to assess if the cardiac output is actually adequate for perfusing the organs.Patients who are unwell or undergoing major surgery routinely have a bladder catheter placed to drain urine. Dr Andy Obeid of Oxford Optronix Ltd, together with Professor Mervyn Singer at University College London, plan to use this catheter to co-insert a small, flexible fibre-optic based sensor to continuously monitor oxygen levels within the bladder wall. This device will indicate whether or not the local blood supply transporting oxygen to the bladder is indeed adequate and whether oxygen measurements from the bladder reflect the situation in other parts of the body. Their aim is to assess whether this new technology provides an easy and readily applicable solution to monitoring tissue health during acute injury. This will pave the way for a further clinical investigation in which the circulation is optimised using the device to see if a reduction in post-trauma complications can be achieved.
Post-Intensive Care Risk-adjusted Alerting and Monitoring One tenth of the 85,000 patients discharged annually from UK intensive care units (ICUs) apparently recovering from their acute illness, die before leaving hospital. Frequent visits to the patients' wards by the ICU nursing team reduce this risk but suitably trained nurses are expensive and in short supply.


A research team in Oxford led by Dr J. Duncan Young plans to develop a comfortable wearable physiological monitoring device linked to computers with 'knowledge' of patterns of vital signs in post-ICU patients to automatically measure vital signs and detect warning signs of serious problems, in patients discharged from the ICU. Using the hospital wi-fi network they will monitor the patients' vital signs continuously with a computer system, which will be programmed with information on each individual patient's risk of deterioration obtained during their ICU stay. If the computer detects a change in the patients' vital signs, it will alert medical staff. This approach will allow hospitals to monitor far more patients for a far longer time than would be possible using nurses alone, whilst minimising false alarms by tailoring the alarm limits to each individual patient.  Even modestly reducing these post-ICU deaths to one in twelve discharged patients would save 1,400 lives annually, equivalent to more than half the road deaths in Great Britain. Compliance with government guidance, reduced costs, improved safety and a reduction in insurance premiums will all be used to persuade healthcare teams to adopt the system.
Imperial logo
Totally automated blood pressure monitoring at home to improve care of patients with Heart Failure or Pulmonary Hypertension Many older people suffer from the long-term disabling illnesses of heart failure and/or pulmonary hypertension. The symptoms are shortage of breath and severely restricted walking range. Without medication, patients get progressively worse until the disease kills them. With medication - a combination of three types - the symptoms can be successfully alleviated. Both over-medication and under-medication can be medically dangerous and costly, either a waste of drugs, side effects or the patient requiring re-hospitalisation.


The vital measurement for controlling medication is pulmonary artery pressure (PAP) which currently can only be measured by catheterisation, involving a hospital procedure and some risk. Professor Chris McLeod and colleagues at Imperial College London have developed a tiny pressure sensor with which they propose to measure PAP. Once  the device is placed securely within the artery, measurements can be made at any time by interrogating the sensor by radio from a pocket-sized reader. The reader will be permanently and wirelessly linked to the hospital. Professor Tarassenko's research group at Oxford University will apply its extensive technical and clinical experience of real-time monitoring of patients in hospital and of the use of mobile-phone based telehealth to improve the management of chronic disease. Close control of the medication will be possible, leading to improved patient condition, slower progression of the disease and reduced re-hospitalisation. Measurement quality is guaranteed and measurements during normal activity will be better than current catheter-based measurements in a clinic or hospital bed. The patient will know that they have 24/7 care.
Imperial logo
Real-time detection of the onset of secondary brain injury in the intensive care unit Traumatic Brain Injury (TBI) - a major cause of death and disability in all age groups, and the most important cause of these outcomes in working people, is now recognised as a ‘silent epidemic’ in the United Kingdom and worldwide.

Central to TBI’s devastation is a delayed ‘secondary’ injury that occurs in 30% of TBI patients each year, while they are receiving Intensive Care. Currently, secondary injury is unpredictable, hence unpreventable.
This project, led by Dr Martyn Boutelle of Imperial College London, will deliver a new solution: a real-time Brain Injury Index. This will be produced with a new clinical instrument that will collect electrical and chemical signals from the injured brain, process them and for the first time derive clinically useful risk factors in real-time that will assist doctors with diagnosis and treatment.

The healthcare implications are important: The Brain Injury Index will show clinicians when secondary damage is starting and what is causing it. This will allow them to start the best treatment for that patient at the right time. The Brain Injury Index instrument will save lives, and reduce incidences of severe disability with its huge personal cost to patients and their families.
 
Open-architecture telehealth platform for COPD COPD affects 210 million people globally, with 50% of costs (unplanned hospital admissions) that could be avoided with more responsive models of care. 30% of COPD patients in the NHS are re-admitted to hospital once within the year. Within 10 years, COPD will become the third leading cause of death. Even if everyone stopped smoking today, the effect on COPD statistics would not be seen for up to 20 years.

A research group headed by Prof Tarassenko at University of Oxford proposes to develop an easy-to-use system for patients to monitor their condition, based on mobile communications technology (hence the name of mHealth). The project will make use of the latest generation of smartphones and tablets to enable COPD sufferers to complete patient diaries, respond early to worsening symptoms, and receive support from a respiratory nurse who has access to all of their data. This will lead to improved self-management and a higher quality of life for these patients, with a reduction in the number of severe exacerbations which they experience and which require an unplanned and costly hospital admission.  A key goal of their approach is to bring the costs of telehealth technology by at least an order of magnitude to enable it to be adopted on a much larger scale than at present.
Rapid detection and treatment of ventilator-associated pneumonia - towards improved antibiotic stewardship Critically ill patients whose lungs are supported by breathing machines (ventilators) commonly develop new lung infection, called ventilator-associated pneumonia (VAP).

Because VAP is often fatal, antibiotics are administered whenever it is suspected. However VAP is hard to distinguish from several non-infective lung conditions and most patients with suspected VAP do not have pneumonia. Therefore many patients receive unnecessary antibiotics for several days, promoting emergence of  'superbugs'. Laboratory infection results for VAP typically return in 3 days. A simple test rapidly and confidently excluding VAP would improve patient care, reduce unnecessary antibiotics and decrease costs.

Professor John Simpson and his team at University of Newcastle has recently showed that low levels of specific proteins in fluid from the lungs of patients with suspected VAP effectively excluded VAP within 4 hours. The test used is an extension of existing technology produced by the team's commercial partner Becton Dickinson (BD) Biosciences. This test will be rigorously analysed in a clinical trial and if rapid, safe, cost-effective reductions in unnecessary antibiotics are confirmed the test will be rapidly introduced into hospitals through the commercialisation expertise of the University of Newcastle technology transfer team and BD Biosciences. Every intensive care unit worldwide deals with suspected VAP, and this new test would have significant global healthcare impact.
Monitoring of Upper Limb Rehabilitation and Recovery after Stroke Through Gaming Stroke frequently damages the area of the brain controlling movement; as a consequence there are thousands of people with weakness down one side of their body. This has a major impact on their lives because everyday activities require two hands.

The brain can relearn control of the weak arm, but this needs frequent therapy over many months. There are not enough therapists to provide this on a one-to-one basis and fewer than 20% of patients regain independence after a stroke.
Professor Janet Eyre and her team at University of Newcastle have developed a library of video-games to be played at home, which provide highly motivating therapy for relearning arm and hand movements. The aim of the project is to analyse information about patients' performance of arm and hand movements during the video games in order to provide feedback to the patient and their therapist via the internet. This will enable effective rehabilitation of arm and hand movements to be delivered at home at times and places to suit patients, whilst still maintaining expert supervision from a therapist.

The need for hospital visits will be greatly reduced, patients will have the opportunity to undertake more frequent therapy sessions, therapists will be able to supervise more patients and patients should regain greater independence.
Immediate Point of Care Molecular Diagnostics for Lung Inflammation/Infection in Critical Care At least 40% of all patients in ICU need a ventilator to support their lungs, with many associated complications. Once established on mechanical ventilation, critically ill patients are at risk of Acute Lung Injury (ALI) and secondary infection resulting in ventilator associated pneumonia (VAP).
Both ALI and VAP increase hospital mortality, illness costs and result in poor functional long-term patient outcomes.

Prof Chris Haslett's team at Edinburgh University aims to develop a technology to improve the diagnosis of these lung diseases. The team will synthesise and test in vitro and in vivo three novel smart probes. These novel imaging agents in conjunction with revolutionary techniques will be designed to detect the presence of neutrophilic infiltration, the presence of bacteria at sites of lung injury, the gram-status of the bacteria, and the presence of MRSA.

This technology has the potential to determine at the earliest possible stage which patients in ICU are developing secondary infection, identifying the organism responsible and allow rapid and accurate detection/exclusion of hospital-acquired infections. It could also provide a rapid, 'real-time' in situ approach to establishing mechanism-based efficacy of new drugs
The HAEM (Haemorrhage and Antifibrinolytics in Emergency Medicine) Project Sudden severe bleeding is an important medical problem in the UK and worldwide.  Recent results from a large international clinical trial in bleeding accident victims show that a cheap drug called tranexamic acid reduces the chances of dying from the injuries and improves other patient outcomes without any increase in side effects.

Tranexamic acid is not a new drug. It has been used to control bleeding during major surgical operations for many years. The realisation that this drug could be used to treat a much wider range of bleeding conditions holds the promise of important benefits for patients at low cost. The research team,  lead by Professor Ian Roberts at the London School of Hygiene and Tropical Medicine, responsible for the accident victim research are now conducting a trial to see if this drug improves outcome in post-partum bleeding.
Development and application of a targeted array test to diagnose and direct therapy in haematological cancers Leukaemia is a form of cancer that affects blood cells and arises in the bone marrow or lymphoid organs. There are several types of leukaemia, depending on which blood cells are affected.

Although several treatments are available, the current genetic tests used to guide therapy are not sufficiently precise. This means that some patients suffering from leukaemia may not respond to treatment or may suffer adverse side-effects. In order to be most effective, treatment must be tailored to the individual. This is also important when considering emerging therapies that are extremely expensive and must be used judiciously.Dr Sam Knight and colleagues at University of Oxford have developed specialized approaches that use microarray technology to test, in detail, the genetic make-up of blood cells from patients with B-cell chronic lymphocytic leukaemia. During their three year HIC Fund study, these approaches will be validated and adapted specifically for use in a clinical setting.The more precise detection of relevant genetic alterations will enable doctors to provide the most suitable treatment for patients, minimizing side-effects of treatment, reducing mortality and NHS care costs. The approach will be suitable for use in hospital laboratories worldwide.
Gene therapy for blindness caused by choroideraemia: a Phase I clinical trial Professor Robert MacLaren and colleagues from University of Oxford are undertaking a clinical trial using gene therapy to treat a disease that causes blindness known as choroideraemia. This condition is currently incurable and affects thousands of people worldwide.

The principle of gene therapy is to use the shell of a virus (known as a vector) to carry a segment of DNA into the cells of affected patients where it can have a beneficial effect. In the case of choroideraemia there is deficiency of a gene known as REP1. The project team have put this gene into a viral vector and shown in their laboratory that it can correct the choroideraemia defect. The project has now reached the point where the team are ready to assess the potential benefit of this treatment in patients. Professor MacLaren and colleagues have designed a study involving 12 patients across four NHS sites that would represent the world's first ever clinical trial for this disease. The effects of the gene therapy will be assessed two years after treating each patient.  If these are shown to be successful, subsequent  regionally located follow-on studies will be set up.
Advanced antisense oligonucleotide technology for exon skipping in Duchenne muscular dystrophy Duchenne muscular dystrophy (DMD) is the most common lethal variant of muscular dystrophy, and affects 1 in every 3500 live male births or 250,000 people world-wide.

Recent encouraging clinical trials have used antisense oligonucleotides (AOs) which, like 'molecular velcros', are able to temporarily repair the mutated DMD gene and restore the lost dystrophin protein to the muscles of DMD patients. However this approach requires repeated administration of the AO drug in order to achieve some repair of the gene in the skeletal muscle; in addition the heart muscle cannot be targeted efficiently with the current AO chemistries. New generation AOs, never tried before in the human, are able to dramatically improve skeletal and cardiac muscle uptake of these molecules in animal models of DMD and significantly improve their therapeutic efficacy. In this study the MDEX Consortium, a world-leading group of preclinical scientists and clinicians based in the UK developing state-of-the-art therapies for neuromuscular disease plans to focus on the development and optimisation of a safe new generation AO drug which we intend to administer to a group of 9 patients affected by DMD after appropriate safety studies.  The project is being lead by Dr Matthew Wood, University of Oxford and Dr Francesco Muntoni, UCL Institute of Child Health.
Using pharmacogenetics to improve treatment in young-onset diabetes (UNITED) Monogenic diabetes is an unusual form of diabetes. It usually presents in patients under the age of 30, so is often misdiagnosed as Type 1 diabetes which is more common. Patients with monogenic diabetes can often be treated with tablets rather than insulin injections, leading to better control of their diabetes, and fewer side-effects and complications.

Less than 5% of people with monogenic diabetes in the UK have been identified, meaning up to 20,000 patients may still be misdiagnosed and receiving inappropriate treatment. The aim of project 'UNITED' is to identify the prevalence of patients with monogenic diabetes resulting from mutations in the HNF1A, HNF4A, or GCK genes, amongst patients with early-onset diabetes, diagnosed at less than 30 years of age.A team led by Professor Andrew Hattersley of the Peninsula Medical School and University of Exeter aims to develop a health economic model of a care pathway leading to the testing of monogenic diabetes. This will help to identify the best way of ensuring that people diagnosed with diabetes under the age of 30 have all the necessary tests to ensure they have the correct treatment for their particular type of diabetes. A small number of people may, as part of this study, be found to have a specific genetic cause of their diabetes and, in these cases, the success and benefits will be measured of changing their treatment, usually from insulin to sulphonylurea tablets.
Deciphering developmental disorders Thousands of babies born each year in the UK fail to develop normally because of errors in their genetic makeup. Currently, diagnosis is restricted to a small minority of children and requires the clinician to recognise the appearance of the child and the pattern of symptoms, supplemented by the use of microscopes to identify large rearrangements of the genetic material in chromosomes.

Research shows that the latest molecular testing methods identify previously undetectable changes in chromosomes allowing new diagnoses to be made. However, clinical use is hampered by the limited availability and inconsistent application of these technologies, and by lack of basic knowledge to link genetic changes directly to symptoms. The consequence is that clinical diagnoses remain impossible except for a small number of children.Dr Nigel Carter of the Wellcome Trust Sanger Institute and colleagues propose to apply state of the art genetic sequencing and molecular testing to 12 000 UK children with abnormal development. The results will provide a unique online catalogue of genetic changes linked to symptoms that will enable clinicians to diagnose developmental disorders. Furthermore, they will design more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with abnormal development.
Quantifying disease burden in patients with cancer using tumour-specific genomic rearrangements Cancer is caused by the accumulation of genetic damage (mutations) in cells within a particular organ. These mutations are only found in the cancerous cells and therefore could be used to track the malignancy during treatment. Advances in DNA sequencing allow the high-throughput identification of these mutations from any cancer sample in a clinically relevant time-frame. As tumour cells die, they release their DNA into the bloodstream.  Dr Peter Campbell, Wellcome Trust Sanger Institute and colleagues propose to use the new generation of genetic sequencing technologies to identify a particular class of mutations caused by the abnormal rearrangement of chromosomes in patients with breast cancer and colorectal cancer.

From these rearrangements, the team will develop assays to detect DNA from each patient's cancer that has been released into the bloodstream. Such assays will be highly specific (minimal risk of falsely positive results) and sensitive (capable of detecting one copy of tumour DNA in many millilitres of blood). The programme will measure the amount of disease using blood samples collected before surgery, after surgery, during chemotherapy and at regular time-points post-therapy. Dr Campbell and colleagues will therefore be able to assess the ability of this approach to identify high-risk patients before treatment begins, to monitor response to treatment and to predict cancer relapse before it is clinically apparent.
Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE, UK T:+44 (0)20 7611 8888