We use cookies on this website. By continuing to use this site without changing your cookie settings, you agree that you are happy to accept our cookies and for us to access these on your device. Find out more about how we use cookies and how to change your cookie settings.

Sir Henry Dale Fellows

For outstanding postdoctoral scientists wishing to build their own UK-based independent research career addressing an important biomedical question. This scheme is a partnership bringing together the Royal Society and the Wellcome Trust.
Print the contents of all the tabs on this page (excludes global navigation tabs)

November 2012

Dr Stephen Baker, University of Oxford
The epidemiology, genomics and longitudinal immune response of Shigella infections in Vietnamese children

Stephen Baker
Stephen is a molecular microbiologist based at the Wellcome Trust Major Overseas Programme in Ho Chi Minh City, Vietnam. He has been there since November 2007 and is the head of the enteric infections research group, which studies the microbiology, genetics, epidemiology and treatment of enteric infections in low-income countries. Focal pathogens include Norovirus, Shigella spp. and Salmonella typhi, the causative agents of diarrhoea, dysentery and typhoid fever, respectively. His current direction combines microbiological, immunological and geographical information to study how organisms are transmitted in urban environments and how this interplay can be used to design and implement vaccination strategies.

Dr Edgar Deu, National Institute for Medical Research
Functional characterisation of essential enzymes in Plasmodium

Edgar Deu
Edgar’s research focuses on identifying and studying the biological function of novel antimalarial targets, with the aim of opening new therapeutic avenues to fight malaria. He combines chemical biology approaches with genetic methods to identify enzymes that are essential for parasite development, validate them as antimalarial targets and characterise their molecular functions. So far his research has particularly focused on the biological roles of a multifunctional protease involved in red blood cell invasion, parasite maturation, and parasite egress from infected erythrocytes.

Dr Yi Feng, University of Edinburgh
Live imaging and genetic analysis of the inflammatory response upon oncogene-induced tissue homeostasis disruption and its contribution to tumour initiation in zebrafish larvae

Yi Feng
Yi’s lab at the MRC Centre for Inflammation Research at the University of Edinburgh uses a combination of live imaging and genetic analysis in zebrafish to study the earliest events of tumour initiation in vivo. Her research focuses on interactions between normal host tissue with transformed cells and infiltrating innate immune cells, and she has demonstrated that the latter mount a trophic response toward emergent transformed cells. Her research aims to understand underlying cellular and molecular mechanisms regulating this trophic inflammation response during tumour initiation.

Dr Benjamin Hale, University of Glasgow, MRC
Interplay between influenza viruses and host ubiquitin signalling

Benjamin Hale
Ben established his own research laboratory at the MRC University of Glasgow Centre for Virus Research in 2011. The lab is predominantly focused on dissecting the functional roles of specific host ubiquitin and ubiquitin-like (e.g. SUMO) modifications during influenza virus infection. His aims are to understand how these fundamental host-cell signalling molecules are hijacked by influenza viruses to ensure efficient replication, and how they are used by the cell to regulate host antiviral defences.

Dr John James, University of Cambridge
Decision making in immune cell activation

John James
Our immune system is a network of white blood cells and proteins that keeps us healthy. John’s research focuses on how T cells in the immune system make a committed decision to initiate an immune response on encountering an infected cell. The signalling network inside these cells is complex, so John has reconstituted a ‘model’ T cell that provides a more tractable way to explore the molecular mechanism of the decision-making process. This research will lead to a better understanding of how our immune system can discriminate between infected and healthy cells, and how we may be able to manipulate it therapeutically when needed.

Dr Jens Januschke, University of Dundee
Recycling polarity - mechanisms controlling stem cell polarity in consecutive divisions in the developing Drosophila central nervous system

Jens Januschke
Central to Jens’s research interests are the mechanisms behind the dynamics of cell polarisation in cycling cells. In particular, he is using life-cell imaging approaches to study how cell polarity and asymmetric division are linked in neuroblasts, the rapidly dividing stem cells of the developing Drosophila central nervous system.

Dr Pablo Lamata, King’s College London
Diastolic-PM: diastolic biomarkers based on physiological models

Pablo Lamata
Pablo is investigating the diastolic performance of the heart. He is developing new methods to measure the heart’s speed of relaxation, the compliance of the muscle, and the pressure driving the blood flow during the filling phase of the heart cycle. The methods are based on the combination of recent advances in magnetic resonance imaging and computational cardiac modelling

Dr Selinda J Orr, Cardiff University
Collaborative and redundant roles of CLRs in antifungal immunity

Selinda Orr
Selinda’s laboratory is part of the Myeloid Cell Biology Group at Cardiff University. She aims to understand collaborative responses between C-type lectin-like receptors and to determine how these responses could be targeted to improve antifungal immunity.

Dr Tim P Vogels, University of Oxford
Controlling balanced cortical dynamics on slow and fast timescales

Tim Vogels
Tim is working to understand and reproduce how the brain processes sensory information, by investigating the rules by which its neuronal architecture is constructed and maintained. He is exploring the tight interaction between neuronal activity and the network structure that sustains this activity and the manifold rules that govern these interactions, differing by cell type. Due to the complexity of such high-dimensional systems, Tim simulates these interactions in abstract, simplified computer models. He aims to test out ideas of what such rules could be, and to make experimentally testable predictions about them. This in turn will help to further flesh out a more exact model of the brain, and hopefully spawn further questions and ideas to try out.

June 2012

Dr Bungo Akiyoshi, University of Oxford
Elucidating the mechanism of chromosome segregation in Trypanosoma brucei

Bungo Akiyoshi
From September 2013, Bungo will be working in the Department of Biochemistry, University of Oxford, studying trypanosomal kinetochores as a group leader.

Dr Jennifer Bizley, University College London
Listening in a noisy world: the role of visual activity in auditory cortex for sound perception

Jennifer Bizley
Jennifer is a sensory neuroscientist whose goal is to understand how neural activity in auditory cortex underpins our perception of a sound scene. By combining electrophysiological and behavioural approaches Jennifer aims to explore how the activity of single neurons and neural populations results in sensory discrimination. Jennifer’s current research explores how and when visual information influences auditory perception, and how visual signals alter activity in auditory cortex.

Dr Maciej Boni, University of Oxford
Epidemiology of human influenza in Vietnam

Maciej Boni
Maciej is currently running a serial seroepidemiology study on human influenza in southern Vietnam and an influenza-like illness study in Ho Chi Minh City. The results of this work will be used to determine whether influenza viruses persist year-to-year in Vietnam and, more broadly, to determine whether countries like Vietnam have the right conditions to seed influenza epidemics in other parts of the world.

Dr Tiago Branco, MRC Laboratory of Molecular Biology
Dendritic integration in the ventromedial nucleus of the hypothalamus

Tiago Branco
In 2012 Tiago started his own group at the MRC Laboratory of Molecular Biology, where he combines physiological and molecular methods to investigate how the mouse brain implements the computations that underlie innate behaviours. He is currently a Visiting Scientist at the Janelia Farm Research Campus, working on synaptic integration in the hypothalamic circuits that control feeding behaviour.

Dr Omer Dushek, University of Oxford
Predicting efficient T cell activation with therapeutic applications

Omer Dushek
Omer is currently working at the Sir William Dunn School of Pathology at the University of Oxford. His research in molecular immunology aims to use a combination of mathematical modelling and quantitative experiments to understand the complex interplay between the signalling proteins that regulate the activation of T lymphocytes.

Dr Stephen Graham, University of Cambridge
Molecular mechanisms of membrane trafficking in pathology and infectious disease

Stephen Graham
Stephen is interested in how eukaryotic cells effect communication between their membrane-bound compartments, how such communication is regulated, and how viruses subvert these mechanisms to their own ends during infection. He uses primarily biophysical and structural biology techniques to address these questions and is currently based in the Virology Division of the Department of Pathology, University of Cambridge.

Dr Garrett Hellenthal, University College London
Inferring human colonisation history using genetic data

Garrett Hellenthal
Garrett has been working at University College London since 2012, developing statistical methods to infer population history using DNA. He is currently developing methods to identify periods in the past when worldwide populations have exchanged DNA, for example due to invasions or migrations, and to describe the genetic make-up of the groups involved in these events. One current project involves characterising the genetic structure of the United Kingdom as part of the People of the British Isles project.

Dr Christopher Rodgers, University of Oxford
Advanced human cardiovascular magnetic resonance spectroscopy

Christopher Rodgers
Chris runs the Cardiac Spectroscopy group at the Oxford Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, University of Oxford. His research group develops methods for magnetic resonance imaging and spectroscopy of the human heart at ultra-high field strength (7 Tesla). His group has recently recorded the first cardiac 31P magnetic resonance spectra at 7T, already showing significantly better quality than established field strengths.

Dr Kevin Waldron, Newcastle University
Mechanisms of copper and silver toxicity in Staphylococcus aureus

Kevin Waldron
Based at Newcastle University, Kevin’s research aims to understand the roles of metal ions and metalloproteins in biological systems, how metal selectivity is achieved in vivo, and how metals cause toxicity when metal homeostasis breaks down due to metal excess, genetic mutation or disease. This puts his research interests on the interface between inorganic chemistry and biochemistry. His Fellowship project aims to bring together data obtained by a range of biochemical, genetic, biophysical and proteomic approaches to understand the molecular mechanisms by which copper ions kill Staphylococcus aureus cells, and to assess the risk of spontaneous resistance arising.

Dr Sarah Woolner, University of Manchester
Mitotic spindle orientation and the mechanical tissue environment

Sarah Woolner
Sarah’s research aims to understand how cell behaviour in developing embryos is influenced by the external tissue environment. In particular, she is focusing on determining how cell division orientation is directed by mechanical tissue cues. The orientation of cell division plays a vital role in shaping and organising tissues and in determining cell fate.Sarah’s lab is based in the Wellcome Trust Centre for Cell-Matrix Research at the University of Manchester.
Share |
Home  >  Funding  >  Biomedical science  >  Funded projects  >  Awards made  >  Wellcome Fellows  > Sir Henry Dale Fellows
Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE, UK T:+44 (0)20 7611 8888